## Lecture 26: Historical Climate: Volcanoes and Sunspots

Source: Ch 16, 303-305A

**Prof. Alan Robock's presentation** 

## **Historical Climate: Volcanoes and Sunspots**

- How do volcanoes affect climate?
- Name two important volcanic eruptions in the past two hundred years.
- How do sunspots affect climate?
- In what way do sunspot cycles before the 20<sup>th</sup> century imply a Sunclimate connections?



Santorini, 1628 BC

BANK INDONESIA



Etna, 44 BC



#### Tambora, 1815



Krakatau, 1883





Pinatubo, 1991 El Chichón, 1982



St. Helens, 1980



Agung, 1963

Lakagígar, 1783 Famous Volcanic

Eruptions

# Major volcanic eruptions of the past 250 years

| Volcano                               | Year        | VEI | d.v.i/E <sub>max</sub> | IVI   |
|---------------------------------------|-------------|-----|------------------------|-------|
| Lakagígar [Laki craters], Iceland     | 1783        | 4   | 2300                   | 0.19  |
| Unknown (El Chichón?)                 | 1809        |     |                        | 0.20  |
| Tambora, Sumbawa, Indonesia           | 1815        | 7   | 3000                   | 0.50  |
| Cosiguina, Nicaragua                  | 1835        | 5   | 4000                   | 0.11  |
| Askja, Iceland                        | 1875        | 5   | 1000                   | 0.01* |
| Krakatau, Indonesia                   | 1883        | 6   | 1000                   | 0.12  |
| Okataina [Tarawera], North Island, NZ | 1886        | 5   | 800                    | 0.04  |
| Santa María, Guatemala                | 1902        | 6   | 600                    | 0.05  |
| Ksudach, Kamchatka, Russia            | 1907        | 5   | 500                    | 0.02  |
| Novarupta [Katmai], Alaska, US        | 1912        | 6   | 500                    | 0.15  |
| Agung, Bali, Indonesia                | 1963        | 4   | 800                    | 0.06  |
| Mt. St. Helens, Washington, US        | <b>1980</b> | 5   | 500                    | 0.00  |
| El Chichón, Chiapas, Mexico           | 1982        | 5   | 800                    | 0.06  |
| Mt. Pinatubo, Luzon, Philippines      | 1991        | 6   | 1000                   | _     |

## **Volcanic Eruptions**



• Will hot lava flows produce warming effects?

## Fire fountains from Kilauea volcano in Hawaii



• Will forest fires and smokes caused by volcanoes affect climate?

## Laki, Iceland, erupted 1783-1784



• Will beautiful landscapes created by volcanic eruptions affect climate?

#### Mt. Erebus, Oct. 3, 2004



#### • Will a quiescent volcano affect climate?





How does volcano affect climate?

#### **Tropospheric & Stratospheric Aerosols**



**Auto emissions and wild land fires** are 2 sources that emit aerosols into the troposphere that reduce incoming radiation and have a net cooling effect on earth's surface.

Volcanic eruptions push aerosols into the stratosphere. Large eruptions, such as Mt. Pinatubo, have been linked to significant cooling episodes.

#### **Mt. Pinatubo Eruption & Impact**



Three months after the June 1991 eruption of this Philippine volcano, much of the 20 million tons of ejected sulfur dioxide had been directed by zonal stratospheric winds and girdled the equator.

## **Recorded changes in air temperature indicates the volcanic impact on climate.**

#### **Brief Episodes of Volcanic Cooling and El Nino Warming**



## Volcanoes produced the atmosphere and the oceans Volcanic emissions

 $\begin{array}{cccc} N_2 & remains & N_2 \\ CO_2 & photosynthesis & O_2 \end{array} \begin{array}{c} 99\% & of \\ O_2 & dmosphere \\ H_2O & dmosphere \end{array}$ 

## EFFECTS OF LARGE EXPLOSIVE TROPICAL VOLCANOES ON WEATHER AND CLIMATE

| EFF | ECT/MECHANISM                                                                                             | BEGINS                      | DURATION                    |
|-----|-----------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| 1.  | Enhance or reduce El Niño?<br>Tropospheric absorption of shortwave and longw                              | 1-2 weeks<br>vave radiation | 1-2 months<br>n, dynamics   |
| 2.  | Reduction of diurnal cycle<br>Blockage of shortwave and emission of longwav                               | Immediatel<br>e radiation   | y 1-4 days                  |
| 3.  | Summer cooling of NH tropics, subtropics<br>Blockage of shortwave radiation                               | Immediate                   | y 1-2 years                 |
| 4.  | Reduced tropical precipitation<br>Blockage of shortwave radiation, reduced evapo                          | Immediate<br>ration         | y ~1 year                   |
| 5.  | Reduced Sahel precipitation<br>Blockage of shortwave radiation, reduced land te<br>Weaker African monsoon | 1-3 month<br>emp., reduced  | s 1-2 years<br>levaporation |

#### EFFECTS OF LARGE EXPLOSIVE TROPICAL VOLCANOES ON WEATHER AND CLIMATE

| EFI | FECT/MECHANISM                                                                                               | BEGINS                                                     | DURATION                    |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|
| 6.  | Ozone depletion, enhanced UV<br>Dilution, heterogeneous chemistry on aerosols                                | 1 day<br>s                                                 | 1-2 years                   |
| 7.  | Global cooling<br>Blockage of shortwave radiation multiple                                                   | Immediately<br>eruptions: 10                               | v 1-3 years<br>0-100 years  |
| 8.  | Stratospheric warming<br>Stratospheric absorption of shortwave and lor                                       | Immediately<br>ngwave radiation                            | 1-2 years                   |
| 9.  | Winter warming of NH continents <sup>1</sup> / <sub>2</sub><br>Stratospheric absorption of shortwave and lor | -1 <sup>1</sup> / <sub>2</sub> years 1<br>ngwave radiation | or 2 winters<br>n, dynamics |

#### EFFECTS OF LARGE EXPLOSIVE HIGH-LATITUDE VOLCANOES ON WEATHER AND CLIMATE

| EFFECT/MECHANISM                                                                                                                                | BEGINS                                         | DURATION            |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|
| High latitude eruptions:                                                                                                                        |                                                |                     |
| 10. Cooling of continents<br>Blockage of shortwave radiation                                                                                    | Immediately                                    | y 1-2 years         |
| 11. Reduction of Indian summer monsoon<br>Continental cooling, reduction of land-sea te                                                         | <mark>≟-1 year</mark> 1 o<br>emperature contra | or 2 summers<br>ast |
| 12. Reduction of African summer monsoon $\frac{1}{2}$ -1 year 1 or 2 summers<br>Continental cooling, reduction of land-sea temperature contrast |                                                |                     |
| 13. Reduction of Nile River flow                                                                                                                | <sup>1</sup> / <sub>2</sub> -1 year            | 1-2 years           |

**Reduced monsoon precipitation** 

## Tambora, 1815, produced the "Year Without a Summer" (1816)

#### Tambora in 1815, together with an eruption from an unknown volcano in 1809, produced the "Year Without a Summer" (1816)

**Global Surface Temperature Reconstruction** 



Mann et al. (2000)

#### The Pinatubo Bears



In the summer of 1992 the ice on Hudson Bay melted almost a month later than normal.

"That had a dramatic effect on the bears," Ian Stirling says. "They were bigger, they were heavier, they had more cubs, the cubs survived better. And the cubs that were born in that year, we call them the Pinatubo bears, because so many of them survived from that particular year class."



Volcanic sulfate in ice cores gives record of past climate forcing from volcanic eruptions

#### Site J, K, P, Q, S, R are slightly relocated to avoid overlapping.

Genin et al. (1995) found coral death in the Red Sea in the winter following the Pinatubo eruption.

Cooling induced mixing, bringing nutrients which produced an algae bloom, which smothered the coral.

a. Dec. 15, 1994 (normal) b. April 6, 1992 (after Pinatubo)





#### El Chichón, 1982

Sunset Madison, Wisconsin May, 1983



Photograph by Alan Robock

- How do sunspots affect climate?
- In what way do sunspot cycles before the 20<sup>th</sup> century imply a Sunclimate connections?

#### **Sunspot History from Telescopes**



#### **Climate Change and Variations in Solar Output**



More sunspots, stronger solar emissions from the Sun's polar regions and from the bright margins of sunspots.





## Third Assessment Report of the IPCC (2001): General circulation model results



Fig. 12-7

### Third Assessment Report of the IPCC (2001): General circulation model results (b)



Fig. 12-7

## Third Assessment Report of the IPCC (2001): General circulation model results



Fig. 12-7

### **Historical Climate: Volcanoes and Sunspots**

- How do volcanoes affect climate?
- Name two important volcanic eruptions in the past two hundred years.
- How do sunspots affect climate?

• In what way do sunspot cycles before the 20<sup>th</sup> century imply a Sunclimate connections?