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Assessing Landslide Risk in Glacier National Park, MT

. Problem:
With the recession of glaciers inside of Glacier National Park, as well as a warming climate and
changing weather patterns, landslides pose a serious risk to tourists and wildlife. Is there a
computationally simple and time-sensitive method using pre-existing landslide risk factors to
create a hazard-map of landslide risk? Furthermore, can this map be used to—generally—predict
new areas of landslide risk?

My hypothesis is that a reasonably accurate map (i.e. verifiable with historical landslide data) of
landslide risk can be attained for Glacier National Park using publically available rainfall, land-
cover, elevation, and geological data. This is not to say any categorization of risk via solely
second-hand data is a solution to the challenge that is geo-hazard prediction and evaluation.
However, it is a cheap, inexpensive method to analyze possible sites of further—or novel—
research.

1. Data Collection:

I acquired 10m DEM elevation data from the National Park Services’ Integrated Resource
Management Applications Department (IRMA)3. | downloaded the Land Cover data for the
United States from data.gov, which hosted the data collected by the USGS®. Precipitation
coverage | acquired from The USDA as well, collated by Mauro Di Luzio at Texas A&M
University?. Geological data was collected from the National Park Service’s Natural Resource
Program Center®. | also collected data from a project done by D. Butler and L. DeChano-Cook—
more about this in Section 1112,

I11.  Data Preprocessing:

The main challenge with preparing the myriad of data I collected was to make sure each dataset
was defined with a common Projected Coordinate System. | chose the NAD 1983 NSRS2007
Lambert Conformal Conic Projection due to its tendency to preserve shape over area.
Additionally, I clipped datasets where appropriate to only display data within the confines of
Glacier National Park. I next had to make sure that all downloaded raster data could be displayed
with the same resolution and extent, as combining raster data effectively depends on this—more
about raster compatibility in Section V. Additionally, | used the National Park Service’s
Geologic Resource Evaluation Report on Glacier National Park® to assess which geologic units
would be most susceptible to landslide events. I then singled out these units (16 total) and
created a new shapefile with only the pertinent units. Stable rock formations were characterized
with no data.

Finally, I needed historical data. This proved to be harder than expected. The best data | found
were a collection of points that represented the frequency and location of landslides in Glacier
National Park over the course of the year 1998. This data came from a paper published in the
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‘Disaster Prevention and Management’ Journal®.
Canada
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Fig. 1: Historical Landslide data collected by D. Butler and L. DeChano-Cook for the year 1998

I digitized this map by hand and added in points with corresponding frequencies. These data
were to serve as my checks as | went along.

IV. Data Processing & Analysis—Data Presentation
Processing relevant data and analyzing the results took up the majority of time with this project.
After preprocessing of the data was complete--rasterized rainfall, geological, land-cover, and
elevation data—I derived a slope raster from the DEM, as this is the major control on landslide
events. However, | found that slope data was not as helpful as | had originally planned. While
slope does control the formation of landslides, it does not always account for where the landslide
will flow. Of course, it is not the formation of a landslide that is hazardous, it is the path which it
takes until rest. With this fluid behavior, | found it more pertinent to create a “drop raster’, which
is defined as a raster that ‘returns the ratio of the maximum change in elevation from each cell
along the direction of flow to the path length between centers of cells, expressed in percentages’.
This type of raster assigns values based on changes in elevation/slope. | found this to be an
important insight. When using slope data, many of the historical landslide regions were directly
adjacent to high ‘risk’ values, but not concentrated there.
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After checking past landslide locations with the drop raster, it seemed evident that this was the
more accurate representation of a landslides’ destructive path. There are, of course, other factors
that contribute to the formation and magnitude of landslides. Once all the data were of the same
projection, cell size, and extent it took some digging to find out the best way to combine them.
Eventually I settled on Map Algebra. However, in order to combine the data in any meaningful
way | had to normalize all four rasters on the same scale. | chose a scale from 1-5 due to the
limiting number of land-cover categories that influenced landslide activity (Barren Land, Scrub,
Perennial Snow, Herbaceous, and Developed: Open Space)®. ArcGIS quickly broke the
continuous data into 5 classes, but classifying the geology on this scale took some research into
the regional geology of Glacier National Park.
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Fig. 2: All data was rasterized, then reclassified. In this case, the rainfall raster was reclassified from
values ranging between 19 and 111 inches of annual precipitation to a normalized scale of 1-5. Cell size

was conserved as well as extent.
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The Geologic Resource Evaluation Report again came in handy, as the units were categorized in
terms of erosion resistance on a scale from “Very Low’ to ‘Very High’®. The units that | deemed

susceptible in the pre-processing phase ranged from “Very Low’ for Quaternary Deposits, to

‘Moderate to High’ for the jointed bluffs of limestone that categorize many of the cliff faces in
Glacier National Park (Fig 6). Once all of the data were reclassified, it came down to choosing
weights for each raster to plug into the Raster Calculator. | again turned to the literature. A paper
in ‘Natural Hazards and Earth System Sciences by Costanzo et. al (2012) did a similar study in
which they weighted landslide factors according to their findings on landslide formation in
Spain’. 1 used their values as a guide, but not a rubric. After a few iterations, | settled on weights
for the raster as follows.
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Fig. 6: Table compiled as part of the Geologic Resource Evaluation Report®
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The combined raster:
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Fig. 7: Combined, scaled, and W%ighted raster of landslide hazard.
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I then attempted to do some ground-truthing for this data. Due to the inherent error in
digitizing a map, as well as the unknown error of the historical landslide data, | decided to add a
1000m radius buffer around each point. The rationale behind this was that there was no
indication in the journal article of whether the team mapped landslide origin, landslide
destination, or just path. Additionally, the resolution of the historical data was not accurate
enough to get a distinct point via digitization. Inspecting the points and buffers yielded
interesting observations:
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For the vast majority of point-locations (22/25) the 1000m buffer encapsulated both red and
green regions. In other words, the buffers usually captured a marked transition between high and
low values. This is most likely because of the error as described above. | then inspected the aerial
photography to gain more insight:
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Inspecting the aerial photography of the identified regions showed transitions between barren,
steeper slopes to vegetated areas of lower relief. This aligns with the notion that D. Butler and L.
DeChano-Cook mapped areas of total landslide movement as opposed to just nucleation sites. As
an exercise, | looked for similar regions of transition in the created hazard raster that had no
recorded activity of landslides (in 1998) and compared them with aerial photography*. An
example:

Fig. 16: A handpicked area not within the historical data that exhibits characteristics
of landslide potential. Some photographic evidence of past sliding activity.
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There seems to be some evidence of landslide activity in the form of lobate deposits at the base
of the mountain. While this method is relatively *quick and dirty’ I believe it has the potential to
inform researchers in the future about possible landslide hazards. Changing climate and weather
patterns put humanity at the mercy of nature more than ever before. I believe this method for
landslide hazard analysis could help in the preparation for these events.
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