
4. Acid Base Chemistry 

4.1. Terminology: 
4.1.1. Bronsted / Lowry Acid:   

"An acid is a substance which can donate a hydrogen ion (H+) or a proton, while a 
base is a substance that accepts a proton. 

B- + HA <---> HB + A-  
base1 + acid1 <---> acid2 + base 2 

Where HB = the conjugate acid 
        A- = the conjugate base 
Examples:  HCl + water; carbonate + water; H2S in Water 
Note that water can act as either an acid or a base.  Such substances are called 

ampholytes, and are amphoteric. 
4.1.2. Lewis Acid:   

This is a broader definition that is stated as a substance that accepts an electron, 
while a Lewis base donates a proton.  All Bronsted/Lowry acids are Lewis acids, 
not all Lewis acids anr Bronsted acids. 

4.1.3. Acids in Aqueous Solution: 
--Acids are usually refered to as donating protons, or H+, while bases donate OH-, or 

hydroxyls 
--The proton is strongly bound to water forming the basic unit of H3O+, the 

Hydronium ion.  This species in turn binds to other waters forming H9O4
+ 

--A similar structure is formed with OH, H7O4- 
--the useage of H3O+ is usually reserved to reactions involving water. 

• The reaction for water: 

H2O <---> H+ + OH-   K = 
(H+)(OH-)

(H2O)  

Ka = (H+)(OH-) = Kw   (Dilute solution) 
--We derived the value for Keq from ∆G°f; ∆G°r = +19.09 kcal/mol, Keq 25°C 10-14 
4.1.4. The Dissociation (Equilibrium) Constant, Ka: 
• The Ka refers to the Keq for the reaction where an acid donates a proton to water; 
• The Kb is the reaction in which a base accepts a proton from a water molecule. 
• The value of Ka or Kb is the strength  of the acid or base.  Large numbers are strong 

acids, small numbers are weak acids 
--A strong acid has a stronger tendency to donate a proton 
--A strong base has a greater tendency to accept a proton. 

• Ka is usually expressed in log.  pKa is the negative log of the equilibrium constant 
• A strong acid has a pK  a that is >0.8, a weak acid is <0.8.  The Ka of HI is 100.8 
• A strong base has a pK  b of greater than 1.4 
• A very strong acid dissociates completely at almost all concentrations 
• A very weak acid does not dissociate completely, leaving HA in solution 
• Borderline acids have HA present at high total A concentrations. 
• Rule of Thumb:  Strong acids produce weak conjugate bases; weak acids produce 

strong conjugate bases:  e.g. HCl v. HCO3
- 
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4.1.5. Relationship between Kb and Ka:   

CN- + H2O <---> HCN + OH-     Kb = 
(HCN)(OH-)
(CN-)(H2O) 

HCN + H2O <----> H3O+ + CN-  Ka = 
(H3O+)(OH-)
(HCN)(H2O) 

By adding these two expressions, we get 
2 H2O <---> H3O+ + OH-;   

 

K = KaKb = 
(H3O+)(CN-)(HCN)(OH-)
(HCN)(H2O)(CN-)(H2O)  =  

(H3O+)(OH-)
(H2O)  

 
**This is a legal and useful approach.  Remember, the K is an algebraic, numerical constant. 
Because the activity of water is 1: 

KaKb =  (H3O+) + (OH-) = Kw = 10-14  
 

Where Kw is the equilibrium constant water.  This relationship allows the calculation of 
either Ka or Kb if the other is known by:   pH + pOH = pKw = 14 

--therefore, in pure water when the (H+) = (OH-), the pH = 7, the pOH = 7 
--Acid solution have a pH < 7, basic solutions have a pH > 7, or a pOH < 7 

 
4.1.6. Neutrality, and the affect of temperature: 
--Neutral solutions are pH 7 only at 25°C, where the Kw is 10-14  
--At other temperatures, the pH changes because the equilibrium changes.  As 

temperature increases, since there is a positive ∆H, dissociation increases. 
 

The ∆H° of the dissociation of water is +13.36 kcal/mole 

ln Kw @ 50°C = ln Kw, 25°C + 
∆H°
R  
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298 - 
1

323   = 5.73 x 10-14  

So at 50°C, neutrality is at pH = 6.62. 
 

4.1.7 Muliprotic acids: 
• A monoprotic acid has one proton that can be donated under normal 

circumstances (i.e. environmental conditions.  A diprotic acid has 2, a triprotic 3, 
etc.)   

• For groundwater systems, triprotic acids are the most complicated to deal with, 
and there are several of these, e.g. phosphoric acid, boric acid, and citric acid. 

• Each proton has a unique Ka, or acid dissociation constant, with names of Ka,1, 
Ka,2, etc.   

• A general rule for Bronsted acids is that the first proton to be donated from a 
multiprotic acid is much more acidic than the second, the second more acidic than 
the third, etc.  In organic acids, the second and third may be similar. 

• The conjugate base of the first deprotonation of a diprotic acid is amphoteric, and 
is both a proton donor and a proton acceptor. 
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4.2. Equilibrium Calculations 
This is a systematic approach to solving acid-base equilibrium that uses 4 equations.  The 
goal is to use enough equations, and the right equations, to solve the specific problem 
being examined.  An important consideration, and one of the most difficult to master, is 
the use of specific a assumptions, used to simplify the equations.  This a trial and error 
approach. 
 
4.2.4. Mass Balance: 

In acid-base reactions the reacting species are conserved, assuming a closed system.  
When HA is added to water, the acid ionizes (partly or completely): 

HA + H2O  ---->  A- + H2O 
A mass balance equation would be: 

CT,A = [HA] + [A-] 
CT,A is the analytical concentration of all species containing A, with units being 
moles per liter.  Note that concentration is used. 
 
When C moles of the salt MA are added to a liter of solution: 

MA  <------> M+ + A- 
A- + H2O  <--->  HA + OH- 

CT,M = [M+] + [MA], or if MA dissociates completely, CT,M = [M+]  
 
4.2.4. Equilibrium Relationships 

This utilizes the known equilibrium constant of the acids involved to help solve for 
concentration of an unknown species.  The first equation is Kw.   
 

Kw = (H+)(OH-) = 10-14 at 25oC 
 
Note that here activity must be used, and the difference between activity and 
concentration used in the mass balance equation must be reckoned. 
 
The dissociation of HA is described by : 

K
H A

HAa =
+ −( )( )
( )

 K
HA OH

Ab =
−

−
( )( )

( )
 

Since Kw = KaKb , both of these equations can not be used since they are not 
independent. 

 
4.2.4. Charge Balance (electroneutrality) 

All solutions are electrically neutral.  Unlike the analytical charge balance equation, 
the CB equation used here is an absolute equality – The total molar concentration of 
cations is always equal to the total anions. 
 

[M+] + 2[M2+] + [H+] = [A-] + + 2[A2-] + [OH-] 
 
NOTE:  concentration is used, not activity.  Also, note that [HA] is not used, as it 
is a neutral species. 
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4.2.4. Proton Condition: 

• The proton condition is a mass balance on protons, and is essential part of 
solving for protons involved in equilibria.   

• The proton mass balance is established with reference to a "zero level" or 
reference level for protons, called the PRL.  The PRL is established as the 
species with which the solution was prepared, and species having protons in 
excess of the PRL are equated with species having less than the PRL.   

• This means that protons are conserved, and if protons are transfered from the 
initial reactants, that the result is some species gain protons (>PRL), while 
others lose protons (<PRL). 

 

4.3. Strong Acid-Base Calculations. 
• Examples of strong acids in ground water are nitric and sulfuric acid from acid rain or 

industrial discharge, hydrochloric acid used to open up a well (dissolve calcite) 
• Strong acids have a large Ka, indicating that there are more products than reactants, 

i.e. that the reaction proceeds very far toward to products. 
• The dissociation of strong acids in water is exothermic and has a large positive 

entropy.  The release of heat is from the hydration of proton by water to make 
hydronium ion. 

HCl -Æ Cl- + H+    Ka = 
)(

))((

HCl

ClH
Ka

−+

=  ~103, pK~-3 

So the product of proton and chloride concentration is 1000 times the concentration of 
free HCl.  This leads to the basic assumption used to simplify acid-base calculations: 
STRONG ACIDS DISSOCIATE COMPLETELY in dilute solutions.  This results simplification 
of the mass balance calculation as: 

[Cl-]>>[HCl] 
CT,Cl = [HCL]+[Cl]  

 
Strong and intermediate acids important in natural systems: 

Acid Name Formula pK 
Perchloric HClO4 -7 
Hydrogen Chloride HCl -3 
Sulfuric H2SO4 -3 (pK1) 
Nitric HNO3 -1 
Hydronium H3O

+ 0 
Bisulfate HSO4

- 1.9  (pK2) 
Phosphoric H3PO4 2.1 (pK1) 
Aquo ferric ion** Fe(H2O)6

3+ 2.2  (pK1) 
Arsenic Acid H3AsO4 2.25 (pK1) 

**The ferric iron ion in solution is coordinated to 6 waters of hydration, and you can think of 
these waters as having acidic protons.  Another way of thinking of it is the exchange of a 
water for a hydroxyl ion – that decreases the hydroxyl activity, thus decreasing pH – i.e. 
an acid.  So adding FeCl3 to water decreases pH.  Aluminum acts in the same way. 
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4.4. Weak Acid-Base Calculations 
• Weak acids and bases do not dissociate completely, so while the approach to solving 

the equations is similar to strong-acid systems, the complication of the Ka is added.  
The use of simplifying assumptions is even more important for this system. 

 
Acid Name Formula pK 
Hydrofluoric HF 3.45 
Acetic CH3COOH 4.7 
Arsenic Acid H2AsO4

- 6.77 
Hydrogen Sulfide H2S 7.1 
Dihydrogen Phosphate H2PO4

- 7.2  (pK2) 
Hypochlorous Acid HOCl 7.6 
Hydrogen Cyanide HCN 9.2 
Boric Acid H3BO3 9.3 
Ammonium Ion NH4

+ 9.3 
Bicarbonate Ion HCO3

- 10.3 
Arsenic Acid H2AsO4

- 11.6  (pK3) 
Bisulfide HS- 14  (pK2) 
Water H2O 14 
 
• The small pK values mean that the concentration of the reactants is greater than the 

products, and the reaction does not proceed very far to the right.   
 
Example:  Hydrogen sulfide is produced by sulfate reducing bacteria in some anaerobic 
groundwater, and is common in water wells east of Austin.  Hydrogen sulfide is a very 
weak acid… 

H2S -Æ H+ + HS-   
)(

))((

2
1, SH

HSH
Ka

−+

=  = 10-7.1, pK = 7.1 

The fundamental relationship with weak acids is that the extent of of the reaction, or the 
amount of acid that dissociates, is directly related to the pH.  When pH < pK, little acid 
dissociates.  As pH increases, more acid must dissociate to maintain equilibrium.  The 
relationship between pH and weak acids is also expressed as:   

pH pK
salt

acida= + log
[ ]
[ ]

 

 
Rule of Thumb:  With weak acids, When the pK = pH, the activity of the acid is equal 
to the conjugate base.  This is a critical relationship that you must remember!!  i.e. 
For H2S, at pH 7.1, (H2S) = (HS-) 
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4.5.  Strong Acid-Strong Base Mixtures 
• For this system we need to examine the changes that occur when acids and bases are 

mixed, rather then simply solving a static system.   
• The general approach is to write equations that describe the solution after the acid 

and base are mixed, make simplifying assumptions, then solve as usual. 
• Forget using the equilibrium equation – there is no appreciable undissociated acid or 

base left.  The proton condition equation is possible, but difficult. 
• In this case, you assume that both the acid and base dissociate completely (with 

much heat evolved…), and you now have a salt solution at some new pH.  The best 
equations to use are the mass balance and charge balance equations.  If you know the 
anion concentration, and the metal cation concentration (e.g. add HCl to a NaOH 
solution), then solve for proton 

• When the system is going to change across pH 7 (e.g. acid to base) try to use the 
mixture to first get to neutral, and then to the final pH.  It is conceptually easier than 
going directly from acid to base conditions. 

 

4. Strong acid-weak base mixtures. 
• These mixtures are more complicated because we lose the assumption of complete 

dissociation. 
• Most natural waters, however, behave like a mixture of weak acids and bases. 
• An understanding of these systems is essential to understanding pH buffers. 
 

Equivalent Fraction f = 
number of equivalents of NaOH added

CT Ac,

 

OVERHEAD:  Fig. 4-12 
1.  When f=0.5, pH = pKs.  Any addition of base corresponding to f<0.5 will produce a 

solution pH between that of the original HAc solution and the pKa.  
 
2.  At f=0.5, the titration curve has an invlection point.  At this pH (=pKa) the change 

of pH for a given addition of strong base is small, and the solution is well buffered. 
 
3.  When f=1.0, the pH is that of a 0.001M NaAc solution, or the equiv of Na added is 

equal to the [Ac-] present.  This pH is the equivalence point.  At this pH value the 
curve has an inflection point in the opposite direction to that at f=0.5, and the 
resistance of the solution to pH change is small, or the system is poorly buffered.   

 
4.  The pH increases very slowly as it appraoches the pH of the solutin being added. 

5. pH Buffers and Buffer Intensity: 
 

• A buffer solution is a solution that in some way has the ability to maintain a stable 
composition when various components are added or removed. 

 



7 

• A solution buffered at a particular pH value will contain an acid that reacts with any 
strong base added to the solution and a base that reacts with any strong acid added 
to the solution.   

 
• The pH of a buffer solution can be predicted by the equation (assuming infinite 

dilution): 

  pH pK
salt

acida= + log
[ ]
[ ]

 

 
Question:  Which acid-conjugate base pair should be used to buffer a solution at pH 4.7 and at 
pH 7?  What ratio of acid to conjugate base should be used in each of these buffers? 

 
1.  Examine a table of Ka values to choose an acid with a pKa near the desired pH.  

Acetic acid has a pKa of 4.7, and should be good at pH 4.7. 
 
2.  Simplifying assumptions: 

[H+] and [OH-] << [HAC] and [NaAc] 
 

[ ] [ ]

[ ]

.

.

H

K

HAC

NaAca

+ −

−= = =10

10
1

4 7

4 7  

3.  The pH = pK therefore requires equal concentrations of salt and acid. 
• While this gives the ratio, it does not give the concentration of salt and acid.   
• The greater the concentration, the greater the buffer capacity. 

 
4..  H2PO4- has a pK near 7.0, and can be used to buffer a system: 
 

[ ]

[ ]
.

.

.

Na HPO

NaH PO
2 4

2 4

7 2

7 0

10

10
0 63

− −

−= =  

 
4.2.4. Buffer Intensity 
 
• Buffer capacity (β) or Buffer intensity is defined as the moles/l of strong base which 

when added to a solution causes a unit change in pH.:   

β = = −
− +d OH

dpH

d H

dpH

[ ] [ ]
 

• So the reciprocal of the slope of the titration curve is proportional to the buffer 
intensity. 

• In general the buffer intensity is a maximum at pH = pK, and that β is at a minimum 
when f=1, at the equivalence point of the titration. 

 
Figure 4-15 OVERHEAD 
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4.6. Carbonic Acid/Carbonate system 
1.  Gas Exchange: 

• Gaseous carbon dioxide, CO2(g) dissolves into water producing CO2(aq).  The 
equilibrium of this processes is the Henry's Law Constant for carbon dioxide: 

 

K = KH = 
(CO2(aq))
(CO2(g))

 = 10-1.5 

 
• This species has not yet reacted with anything 

 
2.  Hydrolysis of Carbon Dioxide: 

CO2(aq)  + H2O <----> H2CO3   K = 
(H2CO3)
(CO2(aq))

 = 10-2.8 

 
• Based on the equilibrium constant, the extent of this reaction is small, so H2CO3 is 

only about 0.16% of the  CO2(aq) at 25° 
• This reaction is also kinetically slow, slower than acid-base reactions.   
• It is nearly impossible to analytically separate the two species, and it is difficult to 

determine the acidity constant of H2CO3   so the two are simply added to form the 
species H2CO3*  

 
3.  First Acidity Constant: 
 

Ka,1 =  
(H+)(HCO3-)

(H2CO3*)  ;        K'1 =  
(H+)(HCO3-)

(H2CO3)  = 10-3.5 

 
By substituting the summation for our fictional carbonic acid species, we obtain 

 

Ka,1 =  
(H+)(HCO3-)

(H2CO3) + (CO2(aq))
 

 
Now multiplying the numerator and denominator by (H2CO3), and knowing that: 

 
 (CO2(aq))/(H2CO3) = 1/Km: 

 
(H+)(HCO3-)/(H2CO3)

(CO2(aq)) + (H2CO3)/(H2CO3) = 
K'1

(1/Km) +1 = Ka,1 

 
Since 1/Km >>1,  
 

Ka,1  = K'1Km = 10-3.510-2.8 = 10-6.3 
 

• This means that while carbonic acid is a strong acid, the combination of the two 
species, and the slow kinetics, make it appear as a weak acid 

• It actually is a fairly strong acid capable of dissolving silicates. 
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4.1.7 SYSTEMS APPROACH – carbonic acid system: 

 
1.  Case 1.  Closed system, no solid 
  equations:  Kw  
  Unknowns, (H+), (OH-) 
    pH = 7 
 
2.  Case 2.  Open System, No Solid 

Problem:  Pure water in equilibrium with atmospheric carbon dioxide.  No other solutes, 
assume infinite dilution, 25oC.  What are the concentrations of the unknown species. 

 
equations:      KH, K1, K2, Kw  

Unknowns:  (H+), (HCO3-), (OH-), (H2CO3), (CO32-) 

Constants:  PCO2 = 10-3.5 Atm. 

Assumptions: (H+) >> (OH-);    (HCO3-) >> (CO32-) 

Mass Balance: CT,(CO3) = [CO32-] + [HCO3-] + [H2CO3] 

    assumptions... 

Electroneutrality : [H+] = [HCO3-] + 2[CO32-] + [OH-] 

    assumptions... 

Solution: 

  1)  (H2CO3) = KHPCO2 = (10-1.47)(10-3.5) = 10-5 M 

  2)  (H2CO3) = 
(H+)(HCO3-)

K1
;  K1(H2CO3) = (H+)(HCO3-) 

  3)  (10-5)(10-6.4) = (H+)2 

  4)   (H+) = 10-5.67, pH = 5.67 
   (HCO3-) = 10-5.67 
   (OH-) = 10-8.33 
  5)  (CO32-) = K2(HCO3-)/(H+) = 10-10.3 
 
--In an open system, the [H2CO3] remains constant, fixed by the PCO2 
--The pH of distilled water open to the air is 5.65 
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Case 6:  Open System, Fixed pH 
Problem:  Water in equilibrium with atmospheric carbon dioxide.  pH is fixed at 8.0, 25oC 
using NaOH.  What are the concentrations?. 
equations:      KH, K1, K2, Kw  

Unknowns:  (HCO3-), (OH-), (H2CO3), (CO32-) 

Constants:  PCO2 = 10-3.5 Atm. 

Assumptions: (H+) < (OH-);    (HCO3-) >> (H2CO3) 

Mass Balance: CT,(CO3) = [CO32-] + [HCO3-] + [H2CO3] 

    assumptions... 

Electroneutrality : [H+] + [Na+] = [HCO3-] + 2[CO32-] + [OH-] 

    assumptions... 

Solution: 

  1)  (H2CO3) = KHPCO2 = (10-1.47)(10-3.5) = 10-5 M 

  2)  (H2CO3) = 
(H+)(HCO3-)

K1
;  K1(H2CO3) = (H+)(HCO3-) 

  3)  (10-5)(10-6.4)/10-7 = (HCO3-) 
  5)  (CO32-) = K2(HCO3-)/(10-7)  
 
--In an open system, even with fixed pH, the [H2CO3] remains constant, fixed by the 
PCO2 
 


