

Retrieval and Application of Land Surface Temperature (LST)

Presenter: Ying Sun

Department of Geological Science University of Texas at Austin

WHAT STARTS HERE CHANGES THE WORLD THE UNIVERSITY OF TEXAS AT AUSTIN

Introduction

Remote Sensing of LST

	AVHRR		MODIS
(Advanc	ced Very High Resolution Radiometer)	(Moderate	Resolution Imaging Spectroradiometer)
Band	Band range (µm)	Band	Band range (µm)
1	0.572-0.697 (Visible)	1	0.620-0.670
2	0.716-0.986 (Near infrared)	2	0.841-0.876
3	3.54-3.94 (Middle infrared)	20	3.660-3.840
4	10.32-11.32 (Thermal infrared)	31	10.780-11.280
5	11.41-12.38 (Thermal infrared)	32	11.770-12.270

EOS instrument Terra AM Aqua PM

Physical Climatology 2008 **Remote Sensing of LST** - Split Window Algorithm ACKS 3 SCHOOL OF GEOSCIENCES Sun, 2003 Wan, 1996 Advanced split-window algorithm Step3 Using Atmospheric Lower - for daytime LST retreival **Boundary Temperature** $T_{c}(k) = a_{0}(k) + a_{1}(k)T_{11} + a_{2}(k)T_{12} + a_{3}(k)(T_{11} - T_{12})^{2} + a_{4}(k)(\sec\theta - 1)$ The three-channel LST algorithm Step2 (for night time LST retreival) Using Column Water Vapor $T_{s} = a_{0} + a_{1}T_{i1} + a_{2}T_{i2} + a_{3}T_{i3} + a_{4}\frac{1 - \varepsilon_{i1}}{\varepsilon_{i1}}T_{i1} + a_{5}\frac{1 - \varepsilon_{i2}}{\varepsilon_{i2}}T_{i2} + a_{5}\frac{1 - \varepsilon_{i3}}{\varepsilon_{i2}}T_{i3}$ $T_{s} = C + (A_{1} + A_{2} \frac{1 - \varepsilon}{c} + A_{3} \frac{\Delta \varepsilon}{c^{2}}) \frac{T_{1} + T_{2}}{2} + (B_{1} + B_{2} \frac{1 - \varepsilon}{c} + B_{3} \frac{\Delta \varepsilon}{c^{2}}) \frac{T_{1} - T_{2}}{2}$ Step1 View-Angle Dependent LST Algorithm

Remote Sensing of LST -A daily long term record of NOAA-14 AVHRR LST over Africa

Fig.1 Schematic representation of NOAA-14 AVHRR GIMMS LST data set processing system for the thermal infrared channels

Fig.2 (a) Ensemble emissiity maps for AVHRR channel 4 and (b) channel 5

(overpass around 1:30 PM) and (b) July 2000 (overpass around 4:00 PM).

Pinheiro,2006

Physical Climatology 2008 **Remote Sensing of LST** - Analysis of Land Skin Temperature Using AVHRR Observations NOAA POES Equator Crossing Time 22 -NOAA 1 21 -NOAA 1 NOAA 12 20 -ocal Time (Hour) 19 **Orbit Drift** 18 17 16 15 14 13 **Emissivity uncertainty** 1/1/1985 3/20/1986 6/7/1987 8/23/1988 1/10/1989 1/27/1991 4/15/1992 7/2/1998 9/19/1994 12/6/1995 2/22/1997 5/11/1998 7/29/1999 0/14/2000 0 800 820 840 860 880 900 920 940 960 98 Fig.5 Global distribution of MODIS-observed land surface emissivity. It is broadband emissivity converted from MODIS spectral emissivity using **MODTRAN Cloud Contamination** 1993 AVHRR Tskin Julv July 1993 TOVS Tskin Lack of Diurnal Cycle **View Angle**

250 260

270 280 290

300 310

Fig.6 Comparison of (a) TOVS skin temperature with (b) AVHRR-based LSTD diurnal-averaged LST. Both AVHRR and TOVS data are the monthly mean for Jul 1993.

Jin, 2003

University of Texas, Austin

280

290

270

300

Modeling of LST

-Improvement of Land Surface Emissivity Parameter for Land Surface Models

Relationship: Broadband Emissivity vs. MODIS Spectral Emissivity

$\varepsilon_{8-14} = 0.0139\varepsilon_{29} + 0.4606\varepsilon_{31} + 0.5256\varepsilon_{32}$

Jin, 2006

Fig. 8 (a) MODIS broadband emissivity for January 2003. The broadband emissivities are derived from the MODIS spectral band emissivities using a regression equation–based MODTRAN simulation. The resolution of original MODIS emissivity data is 1 km and here is averaged to the T42 resolution of the climate model. (b) Same as in (a), but for July 2001.

Fig.9. Coupled CAM2–CLM2 simulated emissivity impact on surface temperature (K) for two random days in September. The difference is the control run minus the sensitivity run. The control run uses CLM default soil emissivity (a= 0.06), and sensitivity

default soil emissivity (ϵ = 0.96), and sensitivity run uses satellite-observed emissivity at T42 resolution.

Emissivity effect, T for day2, emg=0.96 - emg=T42

Modeling of LST

- Assimilation of remotely sensed LST

Land Surface Data Assimilation Process

Sini, 2008

Application of LST - LST Product Requirements

Lan	d Surface Ten	perature and E	missivity E	arth Syste	stem Data Record		
Subproduct	Spatial	Temporal	Accuracy	Precision	Current	Future	
	Resolution	Resolution			Data	Data	
					Sources	Source	
Global	10-20 km	Hourly	0.5K	0.1-0.3K	AIRS	CrIS	
					GOES	GOES	
					MSG	MSG	
Regional	1-5 km	2-4 times daily	0.5-1.0 K	0.1-0.3K	MODIS	VIIRS,	
					AVHRR	AVHRR	
					ATSR	ATSR	
Local	30-100 m	Once every 8-16	0.5-1.0K	0.1-0.3K	ASTER		
		days			Landsat		
Emissivity	1% or better (i	n 8-12.5µm) and 3	% or better	(in 3.6-4.2µ	m) all resoluti	ions	

Workshop, 2008

Application of LST - LST Product Requirements

Application	Resolution (m)	Temporal Sampling	Specific Requirements	
National Drought Assessment	1000	1 hr	Co-located veg cover info	
Regional Drought Monitoring	50	1-7 day	Co-located veg cover info	
Agriculture Yield and Water Use	50	1-7 day	Co-located veg cover info	
Weather NWP	1000	1-3 hr		
Soil Moisture and Runoff	50	0.5-7 day	One obs near peak or diurnal range	
Climate Science	5000	1-3 hr	Sensors overlap	
Watersheds and Ecological Services	50	1-7 day		
Landuse and Urban Heat Island	50	0.5-30	Diurnal range useful	
Fire	50	0.5-7 day	Height temperatures sensitivity	
Lithology and Geological Hazards	50	0.5-7 day	Diurnal range useful; High temperatures sensitivity	
Cryosphere	100	0.5-7 day		

Application of LST

- Challenges vs. Solutions

5

3

Challenge

- 1. Limited number of products available
- 2. Difficult to ascertain exactly what is available
- 3. No comprehensive "catalog" of all products
 - 4. Not many are operational
 - 5. The majority is insufficiently validated
 - 6. Discontinuous in space and time
 - 7. Insufficiently long term records
 - 8. Inadequate latency
 - 9. Spatial resolution/ temporal resolution dichotomy

Physical Climatology 2008

Workshop, 2008

1. Other criteria/requirements/issues

Solution

- 2. LST products for all-sky conditions
- 3. The usefulness of LST vs. Tair
- 4. Differences between LST & Taerodynamic
- 5. Relationship between Tair & LST for
- 6. different land surface types

10. Remote Sensing products and model state variables are inherently inconstant 11. Satellite skin temperature and model surface temperature may be inherently inconsistent

Summary

Δ

3

2

✓ The most popular method to retrieve LST is split window algorithm.
✓ However, there are too many uncertainties involved
✓ Some researches constructed the LSTD to represent the diurnal variation of LST.

5

✓ GCM, NCEP, CLM2✓ Data Assimilation System

There are still some challenges associated with the use of LST products for applications. In addition, some uncertainties make it impossible for the future accurate LST product.

University of Texas, Austin

Physical Climatology 2008

Acknowledgement

Dr. Robert Dickinson

Dr. Zongliang Yang

The end

Thank You

Xiaoyan Jiang

Hua Su

Department of Geological Science University of Texas at Austin

Dec 2, 2008

WHAT STARTS HERE CHANGES THE WORLD THE UNIVERSITY OF TEXAS AT AUSTIN